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A Testing Environment for Continuous Colormaps

P. Nardini, M. Chen, Member, IEEE, R. Bujack, M. Böttinger, and G. Scheuermann, Member, IEEE

Fig. 1. Left: Screenshot of our new interactive test suite implemented in the CCC-Tool. Right: Two visualizations show at b the valley
shaped Six-Hump Camel Function [15] for the area [−5,5]× [−5,5] and at a the LittleBit test function (Sect. 4.2.2). Special features
of the Six-Hump Camel function are irregularly shaped troughs in the center of the area that are more than two orders smaller than
the data range difference between center and boundary. The uniformly spaced colormap 1 cannot reveal the troughs, while the last
nonlinear colormap 2 clearly shows the topological structure of the irregularities in the center of the domain.

Abstract— Many computer science disciplines (e.g., combinatorial optimization, natural language processing, and information retrieval)
use standard or established test suites for evaluating algorithms. In visualization, similar approaches have been adopted in some areas
(e.g., volume visualization), while user testimonies and empirical studies have been the dominant means of evaluation in most other
areas, such as designing colormaps. In this paper, we propose to establish a test suite for evaluating the design of colormaps. With
such a suite, the users can observe the effects when different continuous colormaps are applied to planar scalar fields that may exhibit
various characteristic features, such as jumps, local extrema, ridge or valley lines, different distributions of scalar values, different
gradients, different signal frequencies, different levels of noise, and so on. The suite also includes an expansible collection of real-world
data sets including the most popular data for colormap testing in the visualization literature. The test suite has been integrated into a
web-based application for creating continuous colormaps (https://ccctool.com/), facilitating close inter-operation between design and
evaluation processes. This new facility complements traditional evaluation methods such as user testimonies and empirical studies.

Index Terms—Testing Environment, Color Perception, Scalar Analysis

1 INTRODUCTION

In many fields in computer science, algorithms are commonly evaluated
using open libraries of predefined tests. A typical example is the field
of combinatorial optimization with ACM GECCO [1] as its leading
conference. New algorithms are often tested against standard prob-
lems (e.g., the traveling salesman problem or the quadratic assignment
problem), using established libraries (e.g., SPlib [35] or QAPlib [11]).
These libraries contain test data sets with increasing difficulty, each
typically focusing on different (known) challenges in combinatorial
optimization. Similarly, the natural language processing (NLP) commu-
nity frequently uses test data sets in the Semantic Evaluation suite [63].
In the past, algorithmic developments in NLP benefited substantially
from the TREC collection of test data [55].

Algorithmic development has been a core component of scientific
visualization. There were earlier attempts to create an open collection
of test data, such as in the area of volume visualization, and no many
collections are still remaining (e.g., Klacansky:2020:web). Whilst there
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are data sets from the SciVis contests, the evaluation of an algorithm
or the comparison of different algorithms is usually conducted with
proprietary data sets chosen by the evaluator (who is often also the
algorithm developer). In some cases, the evaluation or comparison
is accompanied by a usability study involving domain experts. A
colormap implicitly encodes an algorithmic transformation from a data
set to its visual representation. Hence the evaluation of a transformation
is primarily about the colormap concerned. In this paper, we report
a test suite for evaluating continuous colormaps, in the spirit of the
open approach seen in other fields as well as in the earlier decades
of scientific visualization. This does not mean to abandon usability
studies, but the test suite can efficiently answer many questions and help
improve colormap designs before or after a usability study. The test
suite will also allow the VIS community to collect test data representing
different challenges to colormap designs or different applications as
well as helping identifying guidelines to use or pitfalls to avoid.

Color mapping is probably the most commonly used method for
transforming data variables into visual variables. Color heatmaps are
ubiquitous in all scientific applications featuring captured or simu-
lated data with a spatial context (e.g., geographical data, imagery data,
simulation results underpinned by some geometry, and so on). Every
domain expert dealing with 2D scalar fields knows how to observe color
heatmap. Color mapping is also an integral component in almost all
complex rendering techniques for visualizing height-, scalar-, vector-,
and tensor-fields. One would expect to find some color mapping meth-
ods in any free and commercial visualization software system [2,12,52].

Selecting a good (continuous) colormap has been an enduring topic
in visualization for many years (e.g., [23,42]). There are several metrics
for measuring the quality of colormaps (e.g., perceived color differ-
ences [10, 44]) and tools for creating colormaps (e.g., [30]). However,
there is yet a test suite for colormap designers to try out some design
options in order to investigate how they may reveal patterns in different



test data sets. Although one may test a colormap using an existing
application data set, this is usually not adequate enough because given
a context, a color map should not only reveal important patterns in
known data sets, but also do the same for new data sets that may arrive
in the future. A test suite can enable designers to speculate on different
“what-if” scenarios, and examine how a colormap may react.

This paper presents a test suite designed to serve the above purpose.
The test suite consists of three parts. The first part contains a set
of test functions that provide a comprehensive set of potential local
properties of 2D scalar functions. For example, some functions may
feature “jumps” at different value levels and with different increments
or decrements, gradients of different scales starting from different
levels, critical points, ridges, and different frequencies. In Sect. 4, we
give a mathematical reasoning behind the selection of these functions.

The second part of the test suite contains functions to model a set
of global properties. The designer of a colormap often encounters
challenging data sets with complex variations of data ranges in differ-
ent regions. For example, a multi-band colormap may suit a region
with large but smooth jumps, while a slow-paced sequential colormap
may suit a region with many small but volatile jumps. Hence test
functions that simulate such complex variations challenge colormap
designers as well as colormap optimization algorithms. We use some
well-known sample functions from the (continuous) optimization litera-
ture for this purpose. Complex variations can also be caused by some
local properties alone, such as different signal-to-noise levels.

In addition to the two categories of test functions, the third part
provides real-world data sets collected from different applications. We
expect that this part of the test suite will continue to expend.

By integrating the test suite in our open-access CCC-Tool, which en-
ables users to create, edit and analyze colormaps [30], we now provide
a complete design and test environment for developing and testing of
application-specific colormaps and for supporting all types of visual-
ization applications and domain-specific data sets.

2 RELATED WORK

2.1 Color Mapping
Continuous color mapping (also heat mapping) refers to the association
of a color to a scalar value over a domain and can be considered the
most popular visualization technique for two-dimensional scalar data.

There are many heuristic rules for designing a good colormap, which
have been applied mostly intuitively for hundreds of years [49, 50,
66]. The most important ones are order, high discriminative power,
uniformity, and smoothness [10].

While some colormaps have been designed to sever as default col-
ormaps for many data sets and can perform reasonably well in terms of
rule compliance [29], many colormaps are purposely-designed accord-
ing to application-specific requirements such as the shape of the data,
the audience, the display, or the visualization goal [3, 5, 36, 51]. The
number of possible colormap configurations and the body of related
work on this topic are huge [3, 36, 43, 57, 60].

An effort has been made to measure the quality of colormaps with
respect to these rules quantitatively [10, 21, 29, 37, 54] or experimen-
tally [19, 39, 60, 61], in order to develop theories and algorithms that
can help automate the generation, evaluation, and improvement of
colormaps. Although such theories and algorithms are usually gen-
eral enough to be application-independent, the design of colormaps
in many practical applications can only be effective if one includes
some application-specific semantics in the design, such as key values,
critical ranges, non-linearity, probability distribution of certain values
or certain spatial relationships among values, and so on. Supporting
such application-specific design effort is the goal of this work.

2.2 Colormap Test Data
So far, there is no test suite for colormaps. However, the literature
has provided various examples where some data sets were used for
comparing color maps and demonstrating color mapping algorithms.

Sloan and Brown [51] suggest treating a colormap as a path through
a color space and stress that the optimal choice of a colormap depends

on the task, human perception, and display. They showcase their find-
ings with x-ray and satellite images. Wainer and Francolini [58] point
out the importance of order in a visual variable using statistical infor-
mation on maps. Pizer [33, 34] stresses the importance of uniformity in
a colormap, of which the curve of just noticeable differences (JNDs)
is constant and in a natural order. The uniformity can be achieved by
increasing monotonically in brightness or each of the RGB components,
such that the order of their intensities does not change throughout the
colormap. Tajima [54] uses colormaps with regular color differences
in a perceptually uniform colorspace to achieve perceptually uniform
color mapping of satellite images. Levkowitz and Herman [21] suggest
an algorithm for creating colormaps that produces maximal color dif-
ferences while satisfying monotonicity in RGB, hue, saturation, and
brightness. They test them with medical data from CT scans. Bernard
et al. [4] suggest definitions of colormap properties and build relations
to mathematical criteria for their assessment and map them to differ-
ent tasks independent from data properties in the context of bivariate
colormaps. They test the criteria on analytical data that has different
shapes (e.g., different gradients and spherical surfaces).

Pizer states that the qualitative task is more important in color map-
ping applications, because quantitative tasks can be better performed
using contours or by explicitly displaying the value when the user
hovers over a data point with the mouse. He uses medical images,
including CT scans and digital subtraction fluorography, as example
data sets. Ware [60] also distinguishes qualitative and quantitative tasks.
He agrees that the qualitative characteristics are more important and
explicitly mentions tables as a suitable means for the visualization of
quantitative values. On the one hand, he finds that monotonic change in
luminance is important to see the overall form (qualitative) of his ana-
lytic test data consisting of linear gradients, ridges, convexity, concavity,
saddles, discontinuities, and cusps. On the other hand, his experiments
show that when a colormap consists of only one completely monotonic
path in a single perceptual channel, the quantitative task is error-prone
if one tries to read the exact data values based on the visualization.

Rogowitz, et al. [3,19,38,40–43] distinguish different tasks (isomor-
phic, segmentation, and highlighting), data types, (nominal, ordinal,
interval, and ratio), and spatial frequency (low, high), recommending
colormap properties for each combination. They perform experiments
on the visual perception of contrast in colormaps using Gaussian or
Gabor targets of varying strength superimposed on linear gradients
of common colormaps [19, 39]. Rogowitz et al. use a huge variety
of data through their extensive experiments, for example, text [40],
MRI scans of the human head [42, 42], weather data showing clouds or
ozone distribution [42, 42], vector field data from a simulation of the
earth’s magnetic field or jet flows [3, 42], measurements from remote
sensing [43], cartographic height data [42], analytic data covering a
broad spectrum of frequencies such as planar wave patterns [43], linear
gradients distorted by a Gaussian or Gabor target of increasing mag-
nitude [19, 39], the luminance of a human face photograph [38], and
so on. Their work demonstrates the diversity in the application field
of color mapping and how important it is for a colormap to encode
application-specific semantics. Zhang and Montag [65] evaluate the
quality of colormaps designed in a uniform color space with a user
study using a CAT scan and scientific measurements such as remote
sensing and topographic height data. Gresh [16] measures the JND
between colors in a colormap, using cartographic height data. Ware et
al. [61] generate stimuli for experiments on colormap uniformity by
superimposing vertical strips of Gabor filters of different spatial extent
over popular colormaps with magnitudes ranging from nonexistence
on the top to very strong contrast on the bottom. The users’ task is to
pick the location where they could first perceive the distortion.

Light and Bartlein [22] warn of using the rainbow colormap, showing
that it is highly confusing for color vision impaired users at the example
of temperature data covering North and South America. Borland [6]
also criticizes the rainbow colormap for its lack of order. He compares
different colormaps based on analytic test data that features a spec-
trum of changing frequencies, different surface shapes, and gradients.
Kindlmann et al. [20] suggest a method to evaluate users’ perception
of luminance using a photograph of a human face. Schulze-Wollgast et



Table 1. The most popular test data for colormap testing in the visualiza-
tion literature.

analytic data [6, 19, 27, 29, 39, 43, 56, 59, 60]
[4, 26, 61]

statistics and maps [8, 9, 13, 14, 27, 47, 51, 57, 64]
medical imaging [21, 33, 34, 42, 51, 59, 65]

scientific measurements [14, 16, 22, 29, 30, 42, 43, 46, 64, 65]
scientific simulations [3, 5, 29, 30, 42, 45, 46, 56]

photographs [20, 38, 51, 54]

al. [47] focus on the task of comparing data using statistical information
on maps. Tominski et al. [57] also stress that the characteristics of the
data, tasks, goals, user, and output device need to be taken into account.
They introduce their task-color-cube, which gives recommendations
for the different cases. They use cartographic data to demonstrate their
findings. Wang [59] chooses color for illustrative visualizations using
medical data and measurements of transmission electron microscopy
(TEM), analytic jumps, and mixing of rectangles. Zeileis et al. [64]
provide code to generate color palettes in the cylindrical coordinates of
CIEUV and showcase results using geyser eruption data of Old Faith-
ful and cartographic data. Moreland [29] presents an algorithm that
generates diverging colormaps that have a long path through CIELAB
without sudden non-smooth bends. His red-blue diverging colormap
is the current default in ParaView [2]. He tests different colormaps
with data representing a spectrum of frequencies and gradients partly
distorted by noise. He also stresses the importance of testing on 3D
surfaces where shading and color mapping compete, e.g., the density
on the surface of objects in flow simulation data or on 3D renderings of
cartographic height data. Borland [5] collaborates with an application
scientist working on urban airflow. They suggest combining existing
colormaps to design domain-specific ones, and in case of doubt stick
with the black-body radiation map. They sacrifice traditional rules
(e.g., order) to satisfy the needs (huge discriminative power) of the
application. Eisemann et al. [13] separate the adaption of the histogram
of the data from the color mapping task, introducing an interactive
pre-colormapping transformation for statistical information on maps.
Thompson et al. [56] suggest applying special colors outside the usual
gradient of the colormap to dominantly-occurring values, which are
“prominent” values occurring with high frequency. Their test data
includes the analytic Mandelbrot fractal and flow simulation results,
which are partly provided as examples in ParaView. Brewer [8, 9]
provides an online tool to choose carefully designed discrete colormaps.
This is perhaps the most widely used tool for discrete colormaps. Mit-
telstädt et al. [26,27] present a tool that helps to find a suitable colormap
for different task combinations. They showcase their findings with ana-
lytical data, like gradients and jumps, and real-world maps. Samsel et
al. [45,46] provide intuitive colormaps designed by an artist to visualize
ocean simulations and scientific measurements in the environmental
sciences. Fang et al. [14] present an optimization tool for categorical
colormaps, and use the tool to improve the colormap of the London
underground map and that for seismological data visualization. Nar-
dini et al. [30] provides an online tool, the CCC-Tool, for creating,
editing, and analyzing continuous colormaps, demonstrating its uses
with captured hurricane data, simulated ocean temperature data, and
results of simulating ancient water formation.

All in all, we found that the most popular way of evaluating the
quality of colormaps in the literature is the use of specifically designed
analytic data like gradients, ridges, different surface shapes, fractals,
jumps, or different frequencies, because these synthetic data sets help to
identify specific properties of the colormaps. The second most common
use is cartographic maps, which reflects the historical use of color map-
ping. Furthermore, it is also common to use data in typical applications
of scientific visualization as test data, e.g., fluid simulations (wind,
ocean, turbulence), scientific measurements (weather, clouds, chemi-
cal concentration, temperature, elevation data), and medical imaging
(x-ray, CT scan, digital subtraction fluorography, transmission electron
microscopy). A summary can be found in Table 1. We have carefully
designed our colormap test suite according to these findings, not only
providing an extensive selection of expressive analytic data, but also

containing real-world data from different scientific applications.

3 MOTIVATION

In several fields of computer science, the use of established test suites
for evaluating techniques is standard or commonplace. The motivation
for this paper is to introduce such a test suite to scientific visualization.
So far, user testimonies and empirical studies have been the dominant
means of evaluation in the literature. With this work, we would like
to initiate the development of an open resource that the community
can use to conduct extensive and rigorous tests on various colormap
designs. We also anticipate that the community will contribute new
tests to this resource continuously, including but not limited to tests
for colormaps used in vector- or tensor-field visualization. Such a test
suite can also provide user-centered evaluation methods with stimuli
and case studies, while stimulating new hypotheses to be investigated
using perceptual and cognitive experiments.

The development of testing functions in this paper deals with the
common features that pose challenges in scalar analysis, such as jumps,
local extrema, ridge or valley lines, different distributions of scalar
values, different gradients, different signal frequencies, different levels
of noise, and so on. This scope should be extended in future work
progressively with more and more complex or specialized cases.

The main design goal of our test suite is to provide a set of intuitive
functions, each of which deals with one particular challenge at a time.
They should be easy to interpret and to customize by experts as well
as non-expert users. This aspired simplicity in design can be exploited
in future work to facilitate automatic production of test reports or
automatic optimization of colormaps with respect to a selection of tests.

At present, this initial development should provides a set of test
functions simulating a variety of planar scalar fields with different
characteristic features. It should enable the users to observe the effects
when different continuous colormaps are applied to scalar fields that
have the characteristic features similar to those featured in an applica-
tion. In many situations, the users may anticipate certain features in
data sets that are yet to arrive, and would like to ensure that the color
mapping can reveal such features effectively when the data arrives.
Finding and defining a suitable testing function is usually easier than
manually creating a data set. Especially, unlike a synthetic data set, a
test function is normally resolution-independent and is accompanied
by some parameters for customization.

In addition, the test suite should provide users with data sets that
come from real-world applications, possibly with some modification
wherever appropriate. Such an application-focused collection can be
compiled from the most popular data for colormap testing in the vi-
sualization literature. Since both the collection of test functions and
that of real-world data sets are extensible, the field of visualization may
soon see a powerful test suite for evaluating colormap design. This is
desirably in line with other computer science disciplines.

4 TEST SUITE

The first design goal of our test functions is to allow intuitive interpre-
tation of colormap properties by users. This requires each test function
to have an easily-understandable behavior, and to have a clear mathe-
matical description that can be reproduced consistently across different
implementation. The second design goal is to build the collection of test
functions on the existing analytic examples in the literature surveyed in
Sect. 2 to ensure that the existing experiments can be repeated and com-
pared with new experiments. The third design goal is to help users to
find the test suite and to conduct tests easily. Hence we integrate the test
suite with the CCC-Tool, allowing users to conduct tests immediately
after creating or editing a colormap specification.

As mentioned in Sect. 1, our test suite has three parts: local tests,
global tests, and a set of application data sets. The local tests are
mostly based on analytic examples in the literature and are defined with
considerations from calculus to cover most local properties of scalar
functions. The global tests feature analytic properties of scalar functions
that are not local, such as signal to noise ratio, global topological
properties, different levels of variation, etc. Finally, the application-



Fig. 2. Left: The table shows the structure of the neighborhood with
four elements (A = {a0,a1,a2,a3}). The odd indexed columns (yellow)
always include the same value, increasing from the first to the last
column. The even indexed columns (orange) contain the whole set of
test values in increasing order. Right: Neighborhood variation test with
A = {0.0,0.25,0.75,1.0} for the colormap displayed below including a
three-dimensional version encoding the values through height.

Fig. 3. Three gradient tests, with r = 0, R = 1.0. Top Row: Color mapping
visualizations of the Gradient Variation function for the types linear,
convex, and concave with Tx = Ty and b = 1 for the first type and b = 2 for
the other types. Bottom Row: 3D height-map visualizations of the three
gradient tests.

specific data sets reflect the well-documented fact that colormaps should
also be evaluated using real-world data sets.

The mathematical notions in this section use a few common param-
eters. The user-defined parameters, m,M, set the test function range,
with r,R∈R∧r 6= R. R and r determine the minimum m and maximum
M of the test function with m < M ∈R. With b ∈N the user can select
an exponent that describes the polynomial order. For functions with
enumerated cases, the user can select a specific option T .

4.1 Local Tests

Our basic design principle behind the local tests is classical calculus.
Local means that these test functions help to check the appearance of
local properties of a scalar function after mapping it to color with the
selected color map. The main idea is to use typical local approxima-
tions like low order Taylor series expansions to create the test functions.
We use step functions to show the effect of discontinuities, and pro-
vide functions with different gradients, various local extrema, saddles,
ridges, and valley lines. This corresponds to ideas in the literature, as
shown in Sect. 2, e.g., works by Mittelstädt [26, 27] or Ware [60]. We
also use elements of Fourier calculus by providing functions to test the
effect of different frequencies. The final test looks at the colormap’s
potential to visually reveal small differences within the data range,
which might be an important colormap design goal.

4.1.1 Step Functions

Some popular test images in the literature use steps between adjacent
pixels [26, 27, 59]. In terms of calculus, this means to use a function
with discontinuities. Ideally, the function should have different step
heights starting from different levels. For this purpose, we define a
set A = a0, ...,an−1 of increasing test values ai < ai+1. The function
is split into a rectangular grid with constant values. Uneven columns
contain in ascending sequence one value of A, while even ones contain
A in increasing order. This means that some steps appear multiple times,

Fig. 4. This figure shows a 2D color mapping representation (top) and
a 3D height-map (bottom) of the 2d scalar fields created with the test
function yielding a minimum with o = 1 and p = 1 (left), a maximum with
o =−1 and p =−1 (middle), and a saddle with o =−1 and p = 1 (right).

Fig. 5. Three ridge/valley-line tests (columns), with r = 0, R = 1.0. The
ridge/valley-line is always centrally at x = 0. Top Row: Color mapping
with Tx = Ty = linear, Tx = Ty = concave, and Tx = Ty = convex, and b = 2 in
the latter two cases. Bottom Row: 3D height-map versions of the same
tests.

but the function is rather simple to remember; see Fig. 2. Formally, the
function fStep : [0,2n)× [0,n)→R is given by

fStep(x,y) =

{
abxc/2 if bxc mod 2 = 0
abyc otherwise

(1)

where bxc denotes the largest integer smaller or equal to x. An observer
can quickly identify the column, including one concrete test-value, and
compare it with all values using the adjacent column.

4.1.2 Gradient Variation
In the literature, the most common analytic example features gradient
variation [4, 6, 26, 27, 29]. In terms of calculus, at first glance, this may
suggest using a first-order Taylor approximation. However, the work
by Ware [60] indicates that one should also test concave or convex
properties, which means to use polynomials of somewhat higher-order,
e.g., quadratic polynomials.

For our Gradient Variation test, we defined a test function
fGrad(x,y) : [0,1]× [0,1]→R to examine different gradients including
a concave or convex pattern. The two options Tx,Ty determine if the
behavior is convex or concave along the x-axis or the y-axis.

Basically, along each horizontal line, we start at reviser and inter-
polate to some value g(y) ∈ R. The function g starts with g(0) = r
and ends with g(1) = R. It may also use a linear, convex, or concave
interpolation along y. Its definition is

g(y) =

{
(R− r)(1− (1− y)b)+ r, if Ty = concave
(R− r)yb + r, if Ty = convex

(2)

If b equals one, then both cases describe a linear gradient along y, which
we also denote as Ty = linear. For b≥ 2, we get a concave shape with
a decreasing gradient in the case Ty = concave and a convex shape with
increasing gradient for Ty = convex.



Fig. 6. These two pictures show an example for the Frequency
Variation test. Left: 2D color mapping of the test field. Right: 3D
height-map visualization.

Fig. 7. This figure shows an example test image for each of the three
Threshold Variation test types . From left to right you can see the
linear, the flat, and the steep type. The top row shows the color mapping
images and in the bottom row the corresponding test images as height-
maps.

The actual test function is now defined in a similar manner by

fGrad(x,y) =

{
(g(y)− r)(1− (1− x)b)+ r, if Tx = concave
(g(y)− r)xb + r, if Tx = convex

(3)

Again, b = 1 means a linear gradient along x in both cases, and we
can write Tx = linear in this case. Tx = concave means a convex
shape created by a decreasing gradient, while Tx = concave results in
an increasing gradient and a concave shape. With R > r, we get an
increasing function and with R < r a decreasing one. Fig. 3 shows 2D
and 3D visualizations of examples for the function fgrad(x,y) for the
three cases: Ty = linear, concave, and convex.

4.1.3 Local Topology: Minimum, Maximum, and Saddle

Besides discontinuities and gradients, local extrema and saddles are the
next types of structures in scalar fields, according to calculus. This has
also been noted by Ware [60] and is the fundamental insight behind
topological visualization methods [17]. As local extrema (of some
significance or persistence) and saddles are of interest for most scalar
field analysis tasks, we thus include them in our test suite. For the
calculation of user-definable minima, maxima, and saddles, we are
using Equation 4.

fMMS(x,y) = ox2 + py2 +m (4)

It is based on the well-known fact that stable critical points can be
described by quadratic functions. We put the extrema or saddle at zero.
The user can create a maximum with o < 0∧ p < 0, a minimum with
o > 0∧ p > 0, and a saddle with o > 0∧ p < 0∨ o < 0∧ p > 0. The
starting value of the structure is given by m ∈ R. Fig. 4 shows an
example of this test function with visualizations of minima, maxima,
and saddle points.

Fig. 8. This figure shows four color mappings of global topological
structures with a gradient test function as foundation. The according 3D
versions are shown at the bottom. The image A shows the pure noise
using the replacement option. The following images show the options
max− scaled (B), min− scaled (C) and range− scaled (D) with activated
clipping and a limited value adjustment of 0.25. While B focused the
noise to higher foundation values, C does the same with lower ones. In
contrast D allows globally adjustments of the foundation.

Fig. 9. The two pictures show the Little Bit Variation test (m = 0.1,
M = 1, gm = 0.0001, gM = 0.1), which can used to test the impression
of small value variations by the visibility of vertical grooves. The left
image shows that the first groove with an amplitude of 0.0001 is not
perceptible for all values between 0.1 and 1.0. The right image shows a
3D height-map visualization of the same test.

4.1.4 Local Topology: Ridge and Valley Lines

Besides local extrema and saddle points, ridge and valley lines are
further relevant topological shape descriptors. Again, this has been
noted by Ware [60] with respect to color mapping. Also, the relevance
of ridges and valley lines is well established in feature-based flow
visualization [17]. To test the suitability of colormaps for scalar fields
that include such lines, we use a function fRV : [−1,1]× [0,1]→ R.
The location of the ridge/valley-line is always at x = 0 as a vertical
line. Its shape is determined by the function g that we introduced
in Sect. 4.1.2, so it may be linear, convex, or concave according to
the exponent b ∈N and the shape descriptor Ty. For the slope in x-
direction, we basically use the absolute value with exponent b, i.e.,
|x|b on the interval [−1,1]. This creates a concave shape. For convex
shapes, we use the similar function 1− (1−|x|)b. Both functions are
adjusted to interpolate between r at −1 and 1 and g(y) at 0. This is
quite similar to the definition of g. We introduce the type parameter Tx
and set it to ”convex” or ”concave” and arrive at the definition:

fRV (x,y) =

{
(r−g(y))|x|b +g(y) if Tx = concave
(r−g(y))(1− (1−|x|)b)+g(y) if Tx = convex

(5)

As in the gradient variation case, b = 1 leads to the same linear
function in both cases, which we also denote as ”linear”. For R > r,
we get a ridge-line. For R < r, we get a valley-line. Fig. 5 shows an
example test for ridge-lines using the different Tx and Ty types.

4.1.5 Frequency Variation

Another common test for analyzing colormaps involves variations of
spatial frequencies [6, 29, 43]. To check the behavior for wave-like



Fig. 10. These images show the different distributions for the signal
noise option. To illustrate the noise, the pictures were created with
the replacement option and a noise proportion of 100%. You can see
the following distributions: 1=uniform, 2=normal, 3=beta, 4=beta-left,
5=beta-right. Below each picture is a histogram of the distribution.

Fig. 11. This figure shows some examples for test functions used in the
optimization computer science and also is of interest for our test function
collection. From left to right you can see the functions: A:Bukin Function
Number 6; B:Langermann Function; C:Cross-in-Tray Function; D:Levy
Function Number 13; E:Schwefel Function. [18,28]

functions, the Frequency Variation Test uses an increasing fre-
quency in the x-direction and a decreasing amplitude in the y-direction.
In x-direction, we use an additional parameter D defining the number
of frequency increases. Basically, we start with a single sine wave with
frequency 1. This takes one unit of space in x-direction. Then we add a
single sine wave of frequency 2 using a half unit of space. Then, we
add a single sine wave of frequency 3 using one third unit of space. We
continue in this way until we have D+1 waves of increasing frequency.
The x-range will obviously depend on the elements in the, so we denote
their elements as

x0 = 0 x j =
j

∑
k=1

1
k

(6)

The wave will swing around the median value u with an amplitude W .
Now, we can define the test function by

fFreq : [x0,xD+1]× [0,1]→R (7)
fFreq(x,y) =W (1− y)sin(2π j(x− x j))+u, x j−1 ≤ x≤ x j

j = 1, . . . ,D+1

Fig. 6 shows an example of the Frequency Variation test with six
different frequencies. It should be noted that the image resolution is
critical with regard to aliasing effects in case of high frequencies, i.e.,
when D is large.

4.1.6 Threshold Variation
In many scientific disciplines, natural thresholds, such as the freezing
point of water at 0◦C, and the data distribution close to them are of sig-
nificant importance for visual analysis. This is also a major reason for
the high relevance of isolines and isosurfaces in scientific visualization.

It is possible to integrate isolines into a colormap by creating a dis-
continuous transition point in the colormap [30]. With the Threshold
Variation test, we created a function for testing a specific user-defined
threshold t. The test function fT spans the domain [−1,1]× [−1,1].
The isoline with the value t is a vertical line in the middle, i.e., x = 0.
On the left, the values are lower, and on the right, they are higher.
We use two parameters, a minimum m, and a maximum M, with
m < t < M. To increase visual information in the test image, the
functions fM , fm : [−1,1]→ R change the minimum and maximum
value linearly depending on y:

fM(y) =
M+ t

2
− M− t

2
y (8)

Fig. 12. This figure shows different real-world data sets we collected for
our test suite. You can see the following data sets: A:A thermal data
set for algorithm training (source: https://www.flir.co.uk/oem/adas/
adas-dataset-form/); B:Simulation data of asteroid impacts in deep
ocean water (source: https://sciviscontest2018.org/); C:FTLE
technique from the field of flow visualization [48]; D:Medical computer
tomography scan of a head (source: https://graphics.stanford.edu/
data/voldata/).

Fig. 13. This figure shows a screenshot of the test evaluation in
the CCC-Tool. We present statistics of the Value Difference Field,
Color Difference Field, and Subtraction Field. On the right side
are two visualizations of the test-function. One color mapping is
done with a grey-scaled colormap and the other one with the se-
lected colormap for the analysis. Below are three color mapping im-
ages of the Value Difference Field, Color Difference Field, and
Subtraction Field. All five images are zoomable and change interac-
tively. As a sixth part, the pixel observer shows in combination with the
table the pixel-neighborhood-information of the three fields.

fm(y) =
t +m

2
+

t−m
2

y (9)

We can now define our test function fT : [−1,1]× [−1,1]→R. Along
each horizontal line, i.e., for fixed y, the value changes from fm(y) at
−1 to t at 0, and finally reaches fM(y) at 1. We use three cases that
we call T = linear, T = f lat, and T = steep. The type describes the
gradient behavior around the threshold. As in the cases for the gradient
variation and ridge/valley lines, we use an exponent b ∈N as final
parameter. b = 1 describes the linear case, while higher exponents
create a rather flat or steep gradient around the isoline. The formal
definition of our test function is

fT (x,y) =
( fm(y)− t)|x|b + t if (T = f lat ∧ x≤ 0)
( fM(y)− t)|x|b + t if (T = f lat ∧ x > 0)
( fm(y)− t)(1− (1−|x|)b)+ t if (T = steep∧ x≤ 0)
( fM(y)− t)(1− (1−|x|)b)+ t if (T = steep∧ x > 0)

(10)

In Fig. 7, a plot shows examples of all three types.

4.2 Global Tests
In contrast to the local tests, the global tests look at more global proper-
ties of scalar functions and how well the colormap presents them. First,
we look at global topological properties. We use functions showing
Perlin noise to create multiple local minima and maxima on different

https://www.flir.co.uk/oem/adas/adas-dataset-form/
https://www.flir.co.uk/oem/adas/adas-dataset-form/
https://sciviscontest2018.org/
https://graphics.stanford.edu/data/voldata/
https://graphics.stanford.edu/data/voldata/


height levels and different spatial structures. Details can be found in
Sect. 4.2.1. Second, it is a challenge for any colormap to deal with a
large span of the overall values while small, but relevant, local value
variations are also present. Any nearly linear colormap will completely
overlook these so-called little bit variations. As test functions, we
use linear functions with varying gradient and height as background
with small grooves to include little bit variations. The definition is
given in Sect. 4.2.2. Third, real-world data, especially images created
by measurements, contain noise of various types and intensity, i.e.,
signal-to-noise ratio. We use functions from the local test suite and add
uniform or Gaussian distributed noise of different signal-to-noise ratios.
We describe the details in Sect. 4.2.3. Finally, we add a collection of
test functions from other computer science disciplines to allow for tests
using these functions.

4.2.1 Global Topological Structures
As noted above, other authors indicated the relevance of critical points
for testing colormaps before. In contrast to the local topology in
Sect. 4.1.3, we use a larger number of critical points in the following
test. For the creation of global topological structures, we take the 2D
version of the improved noise algorithm introduced by Perlin [31, 32],
which is often used for the creation of procedural textures or for terrain
generation in computer games. The idea of this test function is to use
some other test function from Sect. 4.1.2 to 4.2.2 as a background
and combine this field with noise according to Perlin’s work. These
distorted gradients and shapes are in analogy with colormap testing
functions specifically used to determine the discriminative power of
subregions of colormaps [19, 29, 39, 61, 62].

To create the critical points, we use the noise function fNoise(x,y) ∈
[−n,n], n > 0∧ n ≤ 1 and distinguish four options (see Fig. 8). For
the options min−,max−, and range− scaled the selected test-function
ftest affect the result. Whereby the influence of the first two options
depend on the closeness of the local value fNoise(x,y) to the m, or
rather M. This procedure creates noise that is focused on small/high
values. At the range− scaled option, the adjustment of the local value
is limited by the test-function range from m to M. Furthermore, an
optional clipping method for these three options prevent values out of
[m,M]. Fourth, we offer replacement as a final option, where users can
set a custom noise-range N = [nm,nM ] with fNoise(x,y) ∈ N. With this
option, the entries of the test-function will be replaced by the noise
value.

ftest(x,y)=


ftest(x,y)+ fNoise(x,y)∗ ftest (x,y)−m

M−m if max− scaled

ftest(x,y)+ fNoise(x,y)∗ M− ftest (x,y)
M−m if min− scaled

ftest(x,y)+ fNoise(x,y)∗ (M−m) if range− scaled
fNoise(x,y) if replacement

(11)

4.2.2 Little Bit Variation
The teaser Fig. 1 demonstrates that standard colormaps may easily
lead to overlooked small value variations. For such cases, i.e., if small
variations in the scalar field (within a small sub-range of the full data
range) carry valuable information for interpretation, we define a test on
the potential of a given colormap to visually resolve small perturbations.
This is similar to distorted gradients, which appear quite frequently in
the literature [19, 29, 39, 61, 62]. The Little Bit Variation test

fLB : [0,2n+1]× [0,1]→R (12)

uses a background function and adds a function fG producing n small
grooves. The background function in this test is a linear gradient
along the y-direction, which is defined by a user-specified value range
[m,M]. Along the x-direction, this function is modified by a function fG
creating 2n+1 alternate stripes of unchanged background and grooves,
so we use

fLB(x,y) = m+(M−m)y− fG(x) (13)

The function fG produces sine-shaped grooves for odd bxc and no
changes for even bxc. As x runs from 0 to 2n+1, this creates exactly n
grooves.

fG(x) =

{
0, if bxc mod 2 = 0
− fA(x)sin(π(x−bxc)), otherwise

(14)

As can be seen, the sine wave’s amplitude is changed by a function
fA(x) and create a test of different small value changes (groove depths).
The function fA(x) determine for each groove the depth by linear
interpolation between user-defined minimum gm and maximum gM . In
Fig. 9, you can see an example for the Little Bit Variations test.

fA(x) = gm +
bxc−1
2∗n−2

(gM−gm) (15)

4.2.3 Signal-Noise Variation
In the signal and data processing, noise plays an important role. It
also affects the results of scientific visualizations. Like the global
topology test (see Sect. 4.2.1), our tool offers to add noise to each
test function (Sect. 4.1.2 - Sect. 4.2.2). The tool uses the standard
random algorithm from JavaScript, which produces pseud- random
numbers in the range [0,1] with uniform distribution. For the noise
behavior, we offer the same noise behavior options from Sect. 4.2.1.
Independent from the selected option, the fraction of noisy pixels can
be set. This fraction describes how many randomly selected field
values are affected by noise. If the noise proportion is set to 100%,
the full test-function is affected by noise. For more flexibility,
we also offer a conversion from a uniform distribution to a normal
or a beta distribution. The conversion from uniform to the normal
distribution is done with the Box-Muller transform [7]. With the normal
distribution, the noise will be more focused on weaker changes around
null for the min/max− scaled and range− scaled options. For the
replacment option, the normal distribution causes a focus on values
around the median of the defined range of noise values. The approach
from uniform to a beta-like distribution (with al pha,beta = 0.5) is
done with the equation betaRandom = sin(r ∗ π

2 )
2, with r being the

result of the standard random generator. Adding noise using a beta
distribution with the min/max− scaled or range− scaled options will
have a priority for values near the maximal change parameter m and−m.
For the replacement option, values near the minimum and maximum
of the defined noise value range will be preferred. We modified this
conversion with a view to do this preference on only one side, thus
for m or −m in the first case or for the maximum or minimum in the
other case. The modification is a mirror at the median random value
to the left or right side of this median. This allows us to create a
beta-like distribution and also a left-oriented beta distribution and a
right-oriented beta distribution. Fig. 10 shows the different distribution
options.

4.2.4 Function Collection
Many domains of computer science use test functions for the evalua-
tion of algorithms. There are several widespread well-known functions
like Mandelbrot Set or Marschner Lobb and also functions like the
Six-Hump Camel Function from the teaser, which are better known
in optimization than computer science [18, 24, 25]. Such functions
and their different attributes could also be an enrichment for evalua-
tion in scientific visualization. Therefore, we included a collection of
such functions from the literature in our testing environment. These
functions stand beside our development of test functions, and provide
further challenges for colormaps. With this collection, we want to
provide over time more and more such functions of interest. In order
to allow users to test their colormaps without changes, we allow the
user to scale the values of these functions to the range of the colormap
or a user-defined range. Fig. 11 shows some examples of functions
used for optimization. Obviously, they also have relevant properties for
the evaluation of color mapping. For example, the Bukin Function
includes many small local minima along a valley-line. [18]



Fig. 14. This figure shows application of the T hreshold test (Sect. 4.1.6)
to improve the distinguishability of temperature variations around the
South Pole with focus on the freezing point (see close-ups in the lower
right corner of a). 1: Local uniform optimized cool-warm colormap. 2:
Modified colormap with a discontinuous transition point to improve the
threshold. a: Visualization of the 2m-temperature of a high resolution
simulation with the global atmosphere model ICON. b: Threshold test
function with m =−63, M = 53, and t = 0. c: Subtraction Field of the
evaluation method (Sect. 5).

4.3 Application-Specific Tests

In the two previous sections, we described several analytic test func-
tions concerning specific challenges encountered in color mapping.
Additionally, we also introduced a collection of already existing test
functions from other computer science domains. Nevertheless, we
think that the involvement of real-world data is indispensable for the
completion of this test suite. Real-world data originates from many
different sources, is generated with various measurement techniques
or simulation algorithms, and includes a myriad of attribute variations.
Most importantly, such data could potentially present several of the
challenges described in the two previous sections at the same time. This
kind of test cannot be easily replaced by our theory-based test func-
tions completely. Therefore, we decided to include a set of application
test data from different domains to cover a wide spectrum of realistic
challenges.

Within one specific scientific domain, there is often a similarity be-
tween typical data sets; e.g., in medicine, data from the MRI (Magnetic
Resonance Imaging) or the CT (Computer Tomography) is frequently
used. Such data sets have similar attributes, and similar requirements
have to be fulfilled by colormaps. If we cover different typical data
sets of different scientific disciplines, in the future, we can hopefully
offer enough different real-world test cases so that most users will find
a case that has some similarities with his data. Like the test function
collection from Sect. 4.2.4, this collection of real-world data will be
extended over time. At the current version, the tool offers medical-,
flow-, and photograph-specific real-world data.

5 TEST EVALUATION

Mostly there are good reasons to select specific colormaps or to design
colormaps in a specific way. Depending on the actually envisaged
purpose of the colormap, a user decides on the number of keys; the
hue, saturation and value of each key; the gradients in the mapping
between the data range and the colormap; and so on. Furthermore, de
facto standards and cognitive motivation may also influence the user’s
choice. Therefore, meaningful automated evaluation of continuous
colormaps without knowledge of their intended use is rarely feasible.
Therefore, a general colormap score computed based on automatic tests
and benchmarks might not be informative.

Instead, we propose to derive information based on aforementioned
test functions that can be analyzed and rated by users themselves. A
user first chooses a test-function from Sect. 4. For each grid point of the
generated test field, we calculate the value differences to the neighbor-

Fig. 15. 1: Starting with the modified colormap of Fig. 14, we used
the Little Bit test (Sect. 4.2.2) to increase the number of noticeable
values of positives temperatures. The view in the a-panels is centered on
Africa. 2: Modified colormap which uses more hue variations to improve
the Little Bit results. a: Visualization of the 2m-temperature of a high
resolution simulation with the global atmosphere model ICON. b: Little
Bit test function with m = 5◦C, M = 53◦C, gm = 0.1◦C, and gM = 1.0◦C.
c: Color Difference Field of the evaluation method (Sect. 5).

ing grid points. Depending on the location within the field, the number
of neighbors varies between three and eight. We normalize these value
differences with the minimum and maximum value differences found
and save them into a Value Difference Field. We repeat this pro-
cess also for the colors. Here, we use some color difference norm (Lab,
DIN99, DE94, or CIEDE2000) and save the normalized values into the
Color Difference Field.

By subtracting these two fields from another, we get a Subtraction
Field. This field represents the local uniformity of the color mapping;
when the local gradients found in the data are accordingly represented
in the color mapped field, the difference between normalized data field
and normalized color mapped field is zero for all pixels/locations. In
the case of a non-linear color mapping, in contrast, the Subtraction
Field will particularly highlight areas with strong non-linear mapping,
which the user might have designed intentionally in order to increase the
number of discriminable colors for a part of the data range. The user can
study the Color Difference Field as well as the Subtraction
Field to analyze the color mapping of the test function.

Each of the three fields has three up to eight values for each pixel.
For the color mapping (Fig. 13), the user can select maximum, average,
or median. Next to that, there are options to select a method for the
calculation of the color difference. The tool offers Euclidean distance
for Lab and DIN99 space or the use of the DE94 or CIEDE2000 metrics
in the Lab space.

To compare the visualizations of Color Difference Field of
different colormaps, we cannot use the normalization by minimum and
maximum. The colors of such color mappings would relate to different
color difference values and are not comparable. Therefore we imple-
mented two alternative options using fixed values for the minimum
and maximum of the normalization to create comparable results. The
Black-White normalization use the greatest possible color difference
between black and white as maximum and zero as minimum. The
Custom normalization uses a user-entered maximum, which is a neces-
sity if the black-white difference is to big by contrast with the occurring
color differences of the Color Difference Fields. In Fig. 14, we
used this third option to get a comparable visualization for a colormap
with a discontinuous transition point.

6 APPLICATION CASE

In this section, we show how the test suite could be utilized to evaluate
the suitability of colormaps with respect to a given application problem.
For this example, we chose a data set from a simulation with a high-
resolution global atmosphere model. The data we use is one timestep



of the temperature at a height of 2m simulated with the icosahedral
ICON model at a global resolution of 5km [53]. We remapped the data
from the unstructured model grid to a regular grid with 4000×2000
grid points for easier use with different tools.

On the global scale, the 2m-temperature is typically characterized
by a wide range of values between less than −80◦C and more than
50◦C. For the selected time step, the simulated 2m-temperature varies
between about −63◦C and 52◦C. Regionally, however, small tempera-
ture variations of the order of 0.1◦C might be critical for the analysis
as, e.g., in the neighborhood of the freezing point at 0◦C.

Panel 1a of Fig. 14 shows a visualization of the data using a spherical
projection with a focus on the South Pole. In contrast to mountainous
regions, where the horizontal 2m-temperature gradient is generally
high, the gradient in flat areas such as oceanic regions is much smaller.
Here, the color differences are too small to depict local temperature
variations, as for example, in regions with values close to 0◦C as shown
in the close-up in the lower right corner of the image.

To test a given colormap for its discriminative power in the data range
around the freezing point, we applied a threshold test with the options
Flat − Surrounding, m = −63, M = 53, and t = 0. First, we start
with a local uniform cool-warm colormap (1a of Fig. 14). The related
test function visualization 1b demonstrates that it is impossible to
differentiate between negative and positive values if the values are close
to 0◦C. The 1c Subtraction Fieldmethod of the test evaluation part
(Sect. 5) yields a nearly white image, which reflects that the colormap
uniformly represents the gradients produced by the test function. To
highlight the freezing point in the mapping, we introduce a non-linearity
in the colormap, at 0◦C. We use the twin key option of the CCC-Tool
colormap specification (CMS) [30], which separates the color key at
0◦C into a left and right color key to create the discontinuous transition.
To improve the visual difference between both sides, we slightly lower
the lightness value and increase the left color saturation to achieve
light blue. We kept white as the right-hand part of the color key. Panels
2a and 2b of Fig. 14 illustrates that the introduced discontinuity in
the colormap clearly separates the areas with negative and positive
temperature values. In comparison to 1c, the Subtraction Field in
2c shows with a vertical red line the spatial position of the discontinuous
transition at 0◦C. The according visualization of the temperature field
of the modified colormap is shown in panel 2a.

If we visualize the global 2m-temperature field using a linear col-
ormap and look at the tropics or the mid-latitudes, we find that regional
variations are also not very well resolved. Using the same colormap,
Fig. 15 1a shows a different view onto our planet, as Fig. 14 1a. The
resolving power of the linear colormap is equally distributed over the
full data range. However, when we analyze the global temperature
distribution, we find that more than half of the data range is used for the
temperature variations far below 0◦C mostly in Antarctica, although
this information is less important for most users of such a data set. With
respect to vegetation and agriculture, we may want to put more focus
on regions with temperatures mostly above 0◦C.

Therefore we extended the path of the colormap through the color
space to get more distinguishable colors for the positive data range. We
used a Little Bit test to control improvements during this process.
Panel 1a of Fig. 15 shows a visualization using the colormap with the
discontinuous transition introduced above. The corresponding Little
Bit test is shown in panel 1b. For the evaluation, we used the Color
Difference Field (Sect. 5). Panel 1c shows how the small grooves
in the linear gradient of the Little Bit test function (that are hardly
noticeable in 1b) become clearly visible in the color difference field.
From left to right, the regularly spaced perturbations in the field increase
in magnitude, which is represented by a stripe pattern in panel 1c that
increases in contrast from left to right. The vertically constant color of
the stripe pattern is a direct consequence of a linear colormap.

However, as we wanted to increase the discriminative power in the
upper part of the colormap, we inserted additional color keys. First,
we moved the blue part of the colormap representing negative values
slightly away from cyan. The freed color space was utilized to repre-
sent the lower positive temperatures. A gradient from white to cyan
0◦C-10◦C is followed by a gradient from cyan to green to represent the

moderate temperature range of 0◦C-20◦C. Next to this, a subsequent
gradient from yellow through beige to light brown shows values be-
tween 20◦C and 40◦C. A further transition to dark red finally shows
higher temperature range of up to 53◦C.

Our colormap semantics were designed to roughly differentiate be-
tween five temperature zones: very cold (blue to light blue), moderately
cool (white to cyan), moderately warm (cyan to green), warm (green
to yellow to beige) and hot (red). Concerning red-green colorblind
viewers, we used a lower and not overlapping lightness range for the
red gradient and the green gradient. The respective color gradients
were separately optimized for local uniformity. The panels 2a and 2b
of Fig. 15 show the visualizations of the temperature data and the test
function with the modified colormap. Note that we used the Little
Bit test function only for the upper part of the colormap that corre-
sponds to temperature values between m = 5◦C and M = 53◦C. As a
result of our modifications of the colormap, it is now possible to see
much more detail in the inhabited part of our planet and to distinguish
between the different temperature zones. Compared to 1c, the Color
Difference Field 2c shows an increase in the color difference at
the expense of the local uniformity of the positive data range.

7 CONCLUSION

In this paper, we have introduced the approach of using test functions
as a standard evaluation method, and we have presented a test suite
for continuous colormaps. Like in other fields of computer science,
one could use such test functions besides user-centered evaluation
(e.g., user testimonies and empirical studies). In compassion with
user-centered evaluation, there is no need to recruit participants, design
questionnaires or stimuli, organize payment, arrange experiment time
and environment, and provide apparatus. Evaluating colormaps using
the test suite can be conducted quickly and easily. The designer can
test many optional colormaps against many test functions and data sets,
which is usually not feasible with user-centered evaluation. The same
tests can be repeated with consistent control and comparability.

For the test suite, we first focused on the specific challenges of
scalar fields. The Sect. 4.1.1-4.2.2 describe the test functions we chose
to address these challenges. To help users with a less mathematical
background, we tried to develop intuitive functions that are simple
and easy to interpret. The test suite currently includes step functions,
different gradients, minima, maxima, saddle points, ridge and valley
lines, global topology, thresholds, different frequencies, and a test for
very small value changes. Although these test functions cannot cover
all possible challenges, we have laid down a solid foundation that can
be extended continually. We have also included the option to add noise
to extend the possibilities of the basic test functions.

Besides our newly designed functions, we have presented in
Sect. 4.2.4 a collection of functions used for evaluation in other com-
puter science fields. We think they will prove to be useful for the
evaluation of colormaps as well. Furthermore, we have included an
initial selection of real-world data sets from different application areas.
As described in Sect. 4.3, tests against real-world data are important
in practice. Each real-world data set in our test suite presents an indi-
vidual challenge of a combination of challenges in scalar field analysis.
Here, our intention is to provide a broad cover such that users are less
dependent on external data.

Our test suite has been integrated into the open-access CCC-Tool. In
Sect. 5 we describe means to evaluate the results of the test functions
visually and numerically that we have also implemented into our online-
tool. An example of using the test suite to evaluate and enhance a
user-designed colormap concerning a specific application problem is
finally presented and discussed in Sect. 6.

For a long-term perspective, we plan to continue the extension of
our collection. One option for real world data would be an open source
database with a web interface and a link to our tool. In order to adopt
the test suite as a standard evaluation method, we would like to work
on the method of automatic test reports, which can perform automatic
analysis of a colormap with a set of tests chosen by the user.
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